DUAL 4-INPUT MULTIPLEXER WITH 3-STATE OUTPUTS

The LSTTL/MSI SN54/74LS353 is a Dual 4-Input Multiplexer with 3-state outputs. It can select two bits of data from four sources using common select inputs. The outputs may be individually switched to a high impedance state with a HIGH on the respective Output Enable (E_{0}) inputs, allowing the outputs to interface directly with bus oriented systems. It is fabricated with the Schottky barrier diode process for high speed and is completely compatible with all TTL families.

- Inverted Version of the SN54/74LS253
- Schottky Process for High Speed
- Multifunction Capability
- Input Clamp Diodes Limit High Speed Termination Effects

CONNECTION DIAGRAM DIP (TOP VIEW)

NOTE:
The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-Line Package.

PIN NAMES		LOADING (Note a)	
		HIGH	LOW
S_{0}, S_{1}	Common Select Inputs	0.5 U.L.	0.25 U.L.
Multiplexer A			
$\mathrm{E}_{0 \mathrm{a}}$	Output Enable (Active LOW) Input	0.5 U.L.	0.25 U.L.
I_{0} - 13 a	Multiplexer Inputs	0.5 U.L.	0.25 U.L.
Z_{a}	Multiplexer Output (Note b)	65 (25) U.L.	15 (7.5) U.L.
Multiplexer B			
$\mathrm{E}_{0} \mathrm{~b}$	Output Enable (Active LOW) Input	0.5 U.L.	0.25 U.L.
$10 \mathrm{~b}-13 \mathrm{l}$	Multiplexer Inputs	0.5 U.L.	0.25 U.L.
Z_{b}	Multiplexer Output (Note b)	65 (25) U.L.	15 (7.5) U.L.

NOTES:
a) 1 TTL Unit Load (U.L.) $=40 \mu \mathrm{~A}$ HIGH/1.6 mA LOW.
b) The Output LOW drive factor is 7.5 U.L. for Military (54) and 15 U.L. for Commercial (74) Temperature Ranges. The Output HIGH drive factor is 25 U.L. for Military and 65 U.L. for Commercial Temperature Ranges.

SN54/74LS353

LOGIC DIAGRAM

FUNCTIONAL DESCRIPTION

The SN54/74LS353 contains two identical 4-input Multiplexers with 3 -state outputs. They select two bits from four sources selected by common select inputs ($\mathrm{S}_{0}, \mathrm{~S}_{1}$). The 4 -input multiplexers have individual Output Enable ($\mathrm{E}_{0 \mathrm{a}}, \mathrm{E}_{0 \mathrm{~b}}$)

$$
\begin{aligned}
& \overline{\mathrm{Z}}_{\mathrm{a}}={\overline{\mathrm{E}_{0 \mathrm{a}} \cdot\left(\mathrm{I}_{0 \mathrm{a}} \cdot \overline{\mathrm{~S}}_{1} \cdot \overline{\mathrm{~S}}_{0}+\mathrm{I}_{1 \mathrm{a}} \cdot \overline{\mathrm{~S}}_{1} \cdot \mathrm{~S}_{0}+\mathrm{I}_{2 \mathrm{a}} \cdot \mathrm{~S}_{1} \cdot \overline{\mathrm{~S}}_{0}+\mathrm{I}_{3 \mathrm{a}} \cdot \mathrm{~S}_{1} \cdot \mathrm{~S}_{0}\right)}}_{\overline{\mathrm{Z}}_{\mathrm{b}}=\overline{\mathrm{E}}_{0 \mathrm{~b}} \cdot\left(\mathrm{I}_{0 \mathrm{~b}} \cdot \overline{\mathrm{~S}}_{1} \cdot \overline{\mathrm{~S}}_{0}+\mathrm{I}_{1 \mathrm{~b}} \cdot \mathrm{~S}_{1} \cdot \mathrm{~S}_{0}+\mathrm{I}_{2 \mathrm{~b}} \cdot \mathrm{~S}_{1} \cdot \overline{\mathrm{~S}}_{0}+\mathrm{I}_{3 \mathrm{~b}} \cdot \mathrm{~S}_{1} \cdot \mathrm{~S}_{0}\right)}
\end{aligned}
$$

If the outputs of 3 -state devices are tied together, all but one device must be in the high impedance state to avoid high currents that would exceed the maximum ratings. Designers
inputs which when HIGH, forces the outputs to a high impedance (high Z) state.

The logic equations for the outputs are shown below:
should ensure that Output Enable signals to 3-state devices whose outputs are tied together are designed so that there is no overlap.

TRUTH TABLE

SELECT INPUTS			DATA INPUTS				OUTPUT ENABLE
$\mathrm{S}_{\mathbf{0}}$	$\mathrm{S}_{\mathbf{1}}$	$\mathrm{I}_{\mathbf{0}}$	$\mathrm{I}_{\mathbf{1}}$	$\mathrm{I}_{\mathbf{2}}$	$\mathrm{I}_{\mathbf{3}}$	$\mathrm{E}_{\mathbf{0}}$	OUTPUT
X	X	X	X	X	X	H	Z
L	L	L	X	X	X	L	$\mathrm{H})$
L	L	H	X	X	X	L	L
H	L	X	L	X	X	L	H
H	L	X	H	X	X	L	L
L	H	X	X	L	X	L	H
L	H	X	X	H	X	L	L
H	H	X	X	X	L	L	H
H	H	X	X	X	H	L	L

[^0]GUARANTEED OPERATING RANGES

Symbol	Parameter		Min	Typ	Max	Unit
$V_{\text {CC }}$	Supply Voltage	54	4.5	5.0	5.5	V
		74	4.75	5.0	5.25	
$\mathrm{~T}_{\mathrm{A}}$	Operating Ambient Temperature Range	54	-55	25	125	${ }^{\circ} \mathrm{C}$
		74	0	25	70	
IOH	Output Current - High	54			-1.0	mA
		74			-2.6	
IOL	Output Current - Low	54			12	mA
		74			24	

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

Symbol	Parameter		Limits			Unit	Test Conditions		
			Min	Typ	Max				
V_{IH}	Input HIGH Voltage		2.0			V	Guaranteed All Inputs	HIGH Voltage for	
VIL	Input LOW Voltage	54			0.7	V	Guaranteed Input LOW Voltage for All Inputs		
		74			0.8				
V_{IK}	Input Clamp Diode Voltage			-0.65	-1.5	V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$, I	$-18 \mathrm{~mA}$	
V OH	Output HIGH Voltage	54	2.4	3.4		V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{IOH}=\mathrm{MAX}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{V}_{\text {IL }}$ per Truth Table		
		74	2.4	3.1		V			
VOL	Output LOW Voltage$Q_{A}-Q_{H}$	54, 74		0.25	0.4	V	$\mathrm{IOL}=12 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CC}} \mathrm{MIN}$, $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}$ or $\mathrm{V}_{\text {IH }}$ per Truth Table	
		74		0.35	0.5	V	$\mathrm{IOL}=24 \mathrm{~mA}$		
IOZH	Output Off Current HIGH				20	$\mu \mathrm{A}$	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=2.7 \mathrm{~V}$		
IOZL	Output Off Current LOW				-20	$\mu \mathrm{A}$	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=0.4 \mathrm{~V}$		
IIH	Input HIGH Current				20	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$		
					0.1	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=7.0 \mathrm{~V}$		
IIL	Input LOW Current				-0.4	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$		
Ios	Short Circuit Current (Note 1)		-20		-130	mA	$\mathrm{V}_{C C}=\mathrm{MAX}$		
ICC	Power Supply Current Total, Output 3-State Total, Output LOW				14	mA	$V_{C C}=$ MAX		
					12				

Note 1: Not more than one output should be shorted at a time, nor for more than 1 second.
AC CHARACTERISTICS $\left(T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}\right)$

Symbol	Parameter	Limits			Unit	Test Conditions	
		Min	Typ	Max			
$\begin{aligned} & \hline \text { tpLH } \\ & \text { tpHL } \end{aligned}$	Propagation Delay, Data to Output		$\begin{aligned} & 11 \\ & 13 \end{aligned}$	$\begin{aligned} & 25 \\ & 20 \end{aligned}$	ns	Figure 1	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$
$\begin{aligned} & \text { tpLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, Select to Output		$\begin{aligned} & 20 \\ & 21 \end{aligned}$	$\begin{aligned} & 45 \\ & 32 \end{aligned}$	ns	Figure 1 or 2	
tPZH	Output Enable Time to HIGH Level		11	23	ns	Figures 4, 5	
tPZL	Output Enable Time to LOW Level		15	23	ns	Figures 3, 5	
tpLZ	Output Disable Time to LOW Level		12	27	ns	Figures 3, 5	$C_{L}=5.0 \mathrm{pF}$
tPHZ	Output Disable Time to HIGH Level		27	41	ns	Figures 4, 5	

SN54/74LS353

3-STATE WAVEFORMS

Figure 1

Figure 3

Figure 2

Figure 4

AC LOAD CIRCUIT

SWITCH POSITIONS

SYMBOL	SW1	SW2
tPZH	Open	Closed
tPZL	Closed	Open
tpLZ	Closed	Closed
tpHZ	Closed	Closed

Figure 5

[^0]: H = HIGH Level
 L = LOW Level
 $\mathrm{X}=$ Immaterial
 (Z) = High Impedance (off)

 Address inputs S_{0} and S_{1} are common to both sections.

